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Abstract. The fourth-order virial coefficients have been
calculated exactly to five decimal places for pure fluids of
the Lennard-Jones potential at many points in the phase
diagram. The calculations were performed through
direct evaluation of the integrals, or diagrams, which
make up the density expansion of the radial distribution
function: included were the standard fast Fourier
transform method of evaluating the simply connected
diagrams and the evaluation of the bridge diagram for
the fourth order in density by expansion in Legendre
polynomials. The polynomial-order dependence of the
bridge diagram calculation and the range dependence of
the simply connected diagrams of the fourth order are
found to have more significance than was thought from
previous studies, especially in the low-temperature
range. This result was confirmed by direct evaluation
of the diagrams which construct the virial coefficients, as
given by Rowlinson, Barker, and coworkers. This
calculation confirmed that numerical convergence has
not been achieved at the precision levels previously
reported in the literature. These differences, though
minor at higher temperatures, can be seen to be more
significant at the lower temperature ranges.
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1 Introduction

The virial equation of state for gases has been used in a
variety of engineering applications, such as turbine
design, steam tables, and general applications which
require knowledge of the deviations from the ideal gas
law for a particular industrial application [1, 2, 3]. The
noble gases and other monatomic gases give us the most
reasonable of the model systems by which we may
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theoretically study the virial equation, as well as one
which could, at least in principle, be extended to more
complex systems such as water.

In its simplest form the virial equation of state can be
written

P
ﬁp—1+Bp+Cp2+Dp3+-~ ,

where P is the system pressure, p is the number density
of a pure species, and ff = 1/kT, with T the absolute
temperature and k& the Boltzmann constant. The scalar
quantities B, C, and D are known as the second, third,
and fourth virial coefficients, respectively.

Historically, the virial equation has been a focus of
statistical mechanical theory [1, 4, 5]. In particular, much
time and energy have been expended on attempts to
calculate this equation of state from the knowledge of
intermolecular forces [6, 7, 8, 9, 10] through an exact
series of integrals written in terms of the potential and
thermodynamic state variables. Necessary to the calcu-
lation of the equation of state by this route is the eval-
uation of the virial coefficients in terms of these integrals.
The virial coefficients may also be written in terms
of density-independent-component probability density
functions, which themselves form a virial series summing
to the radial distribution function. Thus, a solution for
the components of the radial distribution function at
each order of density will lead directly to the virial co-
efficient for the corresponding term in the virial equation
[1, 4, 5, 6, 7, 8]. We will calculate the virial coefficient
of fourth order and show that precise results can be
achieved with a Legendre expansion of the bridge
functions in reasonable computing times.

In this work, the calculation of virial coefficients is,
therefore, broken down into the evaluation of function-
valued integrals which combine to form the components
of the radial distribution function. These integrals are
sometimes represented by, and referred to as, diagrams.
The diagrams are relatively few in number, and most can
be evaluated simply using Fourier methods. There is
one diagram, which is a component of the fourth virial
coefficient, which must be evaluated directly as a



six-dimensional integral. In recent closely related work
by Perkyns and Pettitt [10], with the aim of calculating
more accurate distribution functions for the liquid state
from integral equations, a method was applied using
expansion in Legendre polynomials developed by
Attard and Patey [2]. The radial distribution compo-
nents formed by adding subsets composed of this bridge
diagram and the convolution diagrams become, in turn,
components of the integrand in standard expressions
for the virial coefficients. The resulting combination of
polynomial expansion methods, the Gaussian integra-
tion of these expansions, and efficient fast Fourier
transform (FFT) techniques shows itself to be compu-
tationally efficient.

A similar method of calculating the virial coefficients
directly as scalar-valued diagrams was employed over
30 years ago by Barker and coworkers [6, 7, 8]. This
method has been applied more recently by Sun and Teja
[11]. This method yielded results for the Lennard-Jones
fluid up to fifth order in density. Calculation by the
current method, using strenuous numerical precision
tests, will demonstrate that the error estimates in the
literature were somewhat optimistic. We should state
that the methods used by Barker and coworkers to cal-
culate the second- and third-order virial coefficients were
quite reasonable and that reproduction of their results
using the modern FFT techniques is a straightforward
procedure. For this reason we focus upon the more
enigmatic fourth-order calculation in this work. To this
end, and to show that the converged results are inde-
pendent of the particular technique, we will also calcu-
late the fourth-order virial coefficients directly, through
the method given by Barker and coworkers. Recalcu-
lating the older literature data gives us a touchstone with
which to directly compare the computational efficiency
of the new method, as well as showing that the precision
previously reported may be overstated.

One element necessary to the application of the
techniques which we utilize here is the choice of a suit-
able intermolecular potential functional form. For this
purpose we choose the Lennard-Jones 6-12 potential,
which, while it has not proven to be the “best” potential
for modeling monatomic gases, does provide useful
insight into such systems while remaining analytically
convenient. This potential form has been seen in quite a
large body of computational studies, and thus its prop-
erties are well known [3]. Another aspect of the Lennard-
Jones potential which makes it useful for this calculation
is that it has been used for our purpose before by Barker
and coworkers [6, 7] and by Sun and Teja [11].

This article has the following form. In Sect. 2 we
show the formalism which we use to relate the radial
distribution function, the integral equations, and the
virial coefficients. We outline the method used to cal-
culate the bridge diagram, give a brief description of the
analytic expansion of the virial coefficients as used by
Rowlinson [12], Barker and coworkers [6, 7, 8], and Sun
and Teja [11] and conclude the section with a brief dis-
cussion of the equivalence of the two methods. Section 3
gives the results from our calculation, as well as a
comparison of our results with those in the literature.
The conclusions are presented in Sect. 4.
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2 Theory

2.1 The radial distribution function and the virial
coefficients

A standard expression for the equation of state of a
simple fluid can be written as follows [4]:

pP

) :1—%<ZTZVIVN(1'N)> 5 (1)

where N is the number of particles, r; is the radial
distance vector for each particle i, P is the pressure of the
system, p is the number density, and —V; ¥y (r") is the
force on each particle i. The angled brackets represent
the ensemble average of the summation. Following
standard methods [4], we introduce the radial distribu-
tion function, g(r), which allows us to reduce this
equation to a more tractable form,

r d
B 2o [ Pyt
0

dr , (2)

for a given radially dependent, pairwise-additive inter-
molecular potential u(r). The purpose of this substitu-
tion is to shift the difficulty of calculation away from the
N-body sum present in the ensemble-averaged quantity
in Eq. (1) to the determination of ¢(r), a one-dimen-
sional function of the interparticle separation r = r;.
We simplify the problem further by classifying and
separating the terms of g(») in terms of the Mayer f
bond according to orders of density, i.e.

g(r) = e M) (14 pgi(ri2) + P*g2(ri2) + -] (3)

where ¢ (r12) and g»(r12) are given by the following

gi(r2) = /f(”ls)f(l”z3)dl‘3 , (4)

g2(r2) = /f(rls)f'(r34)f(r4z)dr3 dry
+%/f(”13)f(”32)f(”14)f(i’42)dr3 dry

+2/f(r34)f(r23)f(r13)f(r4z)dr3 dry +d3(r12) .
(5)

The last term in Eq. (5), d5(r12), represents a bridge
function or diagram, which we will define later.

This expansion is convenient not only for the sim-
plification of terms, but also for the logical conclusion
that each term in the ¢(r) expansion (Eq. 3) can be
directly linked to the corresponding virial coefficient, B,
C, and D, through the density ordering in the equation

P
%:1+Bp+Cp2+Dp3+---. (6)

We should also state here that the virial equation does
not converge in so few terms for nongaseous states, but
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while it may not do so, information important to many
applications may still be extracted from the dominant
terms in the series [1].

2.2 Diagrammatic expansion of g(r)

We now briefly outline the use of cluster diagrams as
they pertain directly to the current calculation. Cluster
diagram use and notation have been extensively exam-
ined in the literature [4, 6, 7, 8, 10, 12]; here we will state
only that cluster diagrams are constructed from open
circle root points, which represent spatial variables
which are not integrated over, filled circle field points,
which are variables integrated over, and bonds or
functions, which in our case are the f bonds described
previously. The expansion of Eq. (3) in terms of these
diagrams is given in Fig. 1.

This diagrammatic expansion displayed in Fig. 1
suggests simplifying the integrals into the following

gi(ma) =f=*f, (7)
g2(r12) = di(r12) + da(r12) + ds(r2) (8)
where

di(ro) =f*fxf )
and

dy(ri2) = (f NG ) +21 [ (= f)] (10)

Here f =f(r12) = e Pul2) — [ is the Mayer f bond [13],
which is equivalent in all positions in a diagram
representing a monatomic, spherically symmetric system
such as we consider, and * represents a convolution
integral. Such convolution integrals are straightforward

gi(r) = (A)

go(r) = dy(r) + da(r) +d;(r)

di(r) = I—I
PN
ay(r) = m

Fig. 1. The diagrammatic expansion of g,(r;2) and g»(r12). The
diagrams in the second, third, and fourth rows which sum to give
g2(r12) represent d) (r12), da(r12), and ds(r12), respectively

to calculate with the use of FFT, a technique which has
been used with much success in this context [4, 6, 7, 8].

Once the diagrams have been calculated, the virial
coefficients themselves are obtained using the equations

B=-2n / rof (ra)dr (11)
0
—277.' r Gur
/’”1291 12) lzz)dl’lz ) (12)
s 7l
—2nf T Ou(ra)
D1 = 3 /F%2d1<r12) 6r12 d 12 (13)
0
—2nf r Ou(ra)
D2— 3 /I"‘;Zdz(l"lz) arl2 d 12 (14)
0
-2n T Qu(r
D3 = 3 'B/szdj,(l"]z) a(rllZ)d 12 (15)
0
and
D=D,+D,+Dj5 . (16)

The bridge diagram (function) labeled d5(r2) in Egs. (5),
(8), and (15) has proven to be the most difficult of the
diagrams to calculate. This difficulty arises because it is
impossible to reduce this diagram (the final diagram in
Fig. 1) to the convolutions and multiplications with
which we express the more simply connected diagrams.
The calculation of ds(r2) in other contexts has been
detailed explicitly in two sources [2, 7]; here we will give
the necessary information for our purposes, and we refer
the interested reader to the more detailed accounts. In
analytic form, d(r3) is expressed by

d3(r2) = /f r13)f (r1a) f (r23) f (r24) f (r34)dr3 dry

=TE/I’ dr3/ dr4/sin 93 d93/sin 94 d94
0 0 0

X /f(l’l3)f(l’14)f(l”23)f(l”24)f(r34)d(].'>34 7
0

(17)

where r; is chosen as the origin and r, is aligned
along the positive z-axis, 03 =0, 04= 014,

= \/rl2 + rjz. — 2r;r;c08 0;;, and cos Os4 = cos 03 cos 04

+sin 03 sin 04 cos ¢34. This equation is simplified by
expansion in Legendre polynomials of the angularly
dependent function in the integrand and by using
well-known algebraic manipulations. The result is an
expression in terms of the coefficients of the expansion
[2, 7, 8, 10]. When the coefficients are expressed by
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f;l(rhrj)_Zn;—l/Pn(x)f<,/ri2+rjz-2rl-rjx>dx (18)

for x = cos 0, the final expression for our integral becomes

00 ) 2 X
d3 (1”12) = 27‘[2 <—> / V%f(}"lg)dl’g
; 2n+1 )

></rﬁf(m)ﬂ(mrs)fn(rzvV4)fn(r37r4)d”4 :
0

(19)

Note that we have two different orders of polynomial
inherent in the evaluation of this last integral; namely, the
order used to evaluate the coefficients of the expansion
J,(ri,r;) and the independent order necessary to integrate
over the radial variables r3 and r4, which arises from the
use of Gaussian quadrature to perform the radial
integrations. The orders of these polynomials become a
point of interest in the numerical solution. This will be
more fully illustrated in Sect. 3, where we discuss the
numerical results of the integrals which appear in this
section. We will report the virial coefficients in units
reduced by by = 2ng? /3 and denote them as D} = D, /b},
with similar reductions for D,, D3, and D.

All calculations will employ the Lennard-Jones
potential [4] defined by

o=+ &

where € and ¢ are the standard well depth and distance
parameters.

2.3 Direct expansion of the fourth-order virial coefficients

Direct expansion of the virial coefficients was first given
by Mayer and Harrison [14]. This direct expansion in
terms of the Mayer f bond has been by far the most
common method of calculation of the virial coefficients
[6, 7, 8, 11, 12, 14, 15], predominately owing to the
fact that this expansion has been shown to be more
appropriate when approximations are necessary to
complete a calculation [12, 15]. We defer discussion
of the reasoning for this viewpoint to the end of this
section, where we detail the equivalence of the alterna-
tive methods reviewed in this work. For now, we merely
state the expansion of the fourth-order coefficient and
outline our method of calculation. We have followed the
method outlined by Barker and coworkers [6, 7, §].
The virial equation as given by Mayer takes the form

pP n

= 1= r,p" 21
A LY e
where

T, :%/~--/2Hf(r(,)dr2---drn . (22)
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I, the virial coefficients, are then sums over products of
the f bonds in n + 1 points.

From Egs. (21) and (22), we have that the fourth-
order coefficients,

31
i=b=—135

are given by the integrals

Dy = —%///f(rlz)f(m)f(m)f(r34)dl‘2 drydry
(24)

[3(D1) +6(D,) +D3] , (23)

D, = —g///f(rlz)f("ls)f(rm)f(rzs)f(mt)
X dr2 dl’3 dl‘4 s (25)

D; = —%/ / /f(f’lz)f(f’m)f(”14)f(r23)f(r24)f(r34)
x drp dr; dry |, (26)

where the integral fraction in D, has been left unreduced
to highlight the numerators in the integrals. These
integers, 3, 6, and 1, indicate the symmetry number of the
labeled diagrams Dy, D,, and Dj, respectively; alterna-
tively, these symmetry numbers can be seen as the
number of equivalent pairwise index permutations with
respect to the f bond which can be performed under the
integral. The diagrams which represent these integrals
are given in Fig. 2.

We begin our reduction of the integrals by expanding
D5 in angular coordinates to get

o0 oo oo

D; = —7'52/ r% drz/ r% dr3/r421 dry

0 0 0
n b3

X /sin 923 d623/ sin 034 d934

0 0
2n

x/ﬂmvmmwmﬂmvmmvm. (27)
0

By again applying Eq. (18) and expanding in Legendre
polynomials, we find that

D)= I:I
Dy(r) = z
Ds(r) = m

Fig. 2. The diagrammatic expansion of D;, D;, and Ds
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D3 = _Snaz;<2n+ 1> / f(r)r; drz/f r3)r3 drs
"= 0
x/f
0

It is easy to see that this may be further reduced by
noting that

1’2,7’3)Ji,(7”2,1’4)ﬁ,(7’3,r4)d7”4 . (28)

Ds = —4n/f(r2)r§ dry x ds(r12) (29)
0

where dj(r2) is defined in Eq. (19). Thus, the numerical
evaluation of the bridge diagram of the virial expansion
follows exactly the evaluation of ds(rj2), which was
detailed earlier.

The reduction of D; and D, to more tractable form
may take either of two distinct paths. One method would
be to evaluate them as convolution integrals, in an
analogous manner to d;(r12) and da(r12) [11]. The second
method, which we will follow in our stated purpose
of showing numerical convergence independent of the
method, follows a similar expansion in angular coordi-
nates as that of the bridge diagram. The full derivation
can be found elsewhere [6, 7]; here, we state the results.
Specifically, if we define

o0

L’;j) /fr dr;

7
0

X /f(\/l"lz + I"jz — 2rl-rj Cos Bij) sin Qij dgij s (30)

then it follows that

o0

D, = —6r1° / [L(r)])*dr (31)

0

Dy =122 [ F0)ICr)Par (32)
0

The numerical approach to these equations can be
resolved by noting that

am=/&mmm«ﬁmW>. (33)
0

Thus, the evaluation of D; and D, reduces to the
evaluation of the first term in the expansion f,(r;,r;).
For the evaluation of the f;, term, in this sense completely
separated from the calculation of the bridge diagrams,
we calculate this term through the use of a Romberg
integration scheme [16] rather than the Gaussian inte-
gration used to evaluate these coefficients in the bridge
diagram computation. For notational purposes, from
this point we will refer to the virial coefficients calculated
through this direct method as D;(Barker), etc.

2.4 Note on the equivalence of the two methods

The equivalence of the expansion of the virial coefficients
directly as irreducible integral functions of the f bond,
and as expansions of the radial distribution function, has
been the main stumbling point in the comparison of the
two methods. Specifically, it has been shown [15] that the
two are equivalent only when all diagrams forming an
exact expression for g(r) have been accounted for. For
this reason, previous work has concentrated upon the
direct expansion. The inclusion of an accurate calcula-
tion of the bridge diagram in the g(r) expansion [2, 10]
now allows a clearer comparison of the two methods.

We recall the different definitions which we have
given for the virial equation, i.e.

pP 2 / 3 du(r)

; =1 371/3,0 g(r) i dr (34)
0

and

pP n

L r.p" 35

p ;n e (35)

where

g(r) = e I [1 + pgi(ri2) + pPga(r12) + -+

—¢ —Pu(riz 1+Zg” ] (36)
n>1
for
gn(r n'/ /Zﬂf rij)drsy - --dr, | (37)
and

:%/.../an(r,-_/)drz-~dr,, . (38)

Note that there are n + 1 vertices in I',, and n + 2 vertices
in g,(r). Formal equivalence of the two variations,
Eqgs. (34) and (35), has been proven by Rushbrooke and
Scoins [15] by substituting Eq. (36) into Eq. (34) to yield
Eq. (39).

The proof of this shows equivalence of the expansions
of the virial equation as a whole with term-by-term
equality implied. Finally, we state that this equality
holds in an isotropic, homogeneous medium for which
the potential is pairwise-additive. The question of
equality in more general cases must be shown on an
individual basis and is not necessary here.

3 Results

The numerical results of our calculation of the fourth-
order virial coefficients of the Lennard-Jones fluid have
been summarized in Tables 1, 2, 3, 4, 5, and 6, and
further illustrated in Figs. 3, 4, and 5. Our final results
for D* at phase points ranging from 7* = 20.0 to 0.625
are given in Table 1. The numbers are reported to the



Table 1. The reduced fourth-order virial coefficient of the Len-
nard-Jones potential over T™*
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Table 4. The dependence of the virial coefficients calculated by the
FFT method upon the spacing (dr), of the grid at 7" = 1.2

T* D D D D* npts dr D D
20.00 —-0.23023 0.35384 —-0.04036 0.08325 512 0.10000 —1.925723828 2.253693976
15.00 -0.25232 0.39453 —0.04553 0.09669 1024 0.05000 —-1.929019015 2.253756058
10.00 —-0.27809 0.44613 —-0.05245 0.11559 2048 0.02500 —1.929110960 2.253703922
7.500 -0.29189 0.47537 —-0.05664 0.12684 4096 0.01250 -1.929110959 2.253703923
5.000 —-0.30933 0.50420 —-0.06075 0.13412 8192 0.00625 —1.929110959 2.253703923
4.000 —0.32388 0.51684 —-0.06184 0.13113
3.000 —-0.36060 0.54223 —-0.06182 0.11980
2.500 —0.40460 0.57857 —-0.06084 0.11314 )
2.400 —0.41800 0.59118 —0.06048 0.11270 Table 5. Spacing convergence results at 7* = 1.2 for the coeffi-
2.300 —0.43383 0.60689 —0.06003 0.11303 cients calculated through the Barker method
2.200 —-0.45274 0.62668 —-0.05947 0.11447 . B
2100  —0.47566  0.65193  —0.05875 0.11752 npts  dr Dj(Barker) D3 (Barker)
2.000 —-0.50393 0.68461 —-0.05783 0.12285 50 015000  —1.899939740 2136280493
1.900 —-0.53960 0.72756 -0.05659 0.13137
100 0.07500  —1.917817050 2.230967692
1.800 —0.58583 0.78502 —-0.05489 0.14430
200 0.03750  —1.927622020 2.250740427
1.700 —-0.64779 0.86341 —-0.05246 0.16315
400 0.01875  —1.928915164 2.253327265
1.600 —-0.73420 0.97274 —-0.04884 0.18971
800 0.00937  —1.929079940 2.253656448
1.500 —0.86045 1.12908 —-0.04316 0.22548
900 0.00833  —1.929086714 2.253670585
1.400 -1.05501 1.35895 -0.03377 0.27017
1000 0.00750  —1.929092687 2.253680512
1.300 -1.37326 1.70747 -0.01729 0.31693
1100 0.00682  —1.929093527 2.253685592
1.250 -1.61050 1.94896 —-0.00438 0.33408
1200 0.00625  —1.929096364 2.256898262
1.225 -1.75774 2.09231 0.00383 0.33842
1300 0.00577  —1.929098543 2.253692375
1.150 —2.36493 2.64156 0.03899 0.31562
1400 0.00536  —1.929099250 2.253693969
1.125 —2.64288 2.87465 0.05563 0.28740
1500 0.00500  —1.929099148 2.253696586
1.100 -2.97270 3.13916 0.07573 0.24219 1600 000469  —1.929099908 2153697796
1.050 -3.83785 3.78208 0.12995 0.07418 ) ) )
1.000 —5.09685 4.61693 0.21182 —-0.26810
0.950 -6.97328 5.70211 0.33855 -0.93262
0.875 —-11.84166  7.93990 0.68415 -3.21761 Table 6. Dependence of Dj at 7 =1.2 on the order of the
0.800 -21.73146  10.96645 1.42735 -9.33767 polynomials in the calculation
0.750 —34.18448  13.03741 2.40234 —18.74473
0.625 —130.63139 —0.09749 10.17001 —120.55887 Vi V) D} Dj(Barker)
4 16 0.1197250 —-0.0601363
8 16 —0.1496790 -0.0368914
Table 2. The dependence of the virial coefficients calculated by the 16 16 —0.1614550 —0.0180003
fast Fgurier transform (FFT) method upon the number of points 8 32 —~0.0133230 ~0.0179551
(npts) in the grid for 7% = 1.2 16 32 0.0428704 0.0282048
d B B 32 32 0.0539174 0.0265751
npts r Dy Dy 16 64 0.0163064 0.0136184
1024 0.00625 ~1.928822065 2.253701524 32 64 0.0143019 0.0139738
64 64 0.0143848 0.0139824
2048 0.00625 -1.929110791 2.253703918
32 128 0.0135777 0.0135687
4096 0.00625 -1.929110959 2.253703923
8192 0.00625 ~1.929110959 2.253703923 64 128 0.0135668 0.0135659
: : ) 128 128 0.0135668 0.0135660
64 256 0.0135654 0.0135654
128 256 0.0135654 0.0135654

Table 3. Range convergence results at 7* = 1.2 for the coefficients
calculated through the Barker method

npts dr Dj(Barker) D5 (Barker)

1000 0.00750 —-1.929088646 2.253679640
1100 0.00750 —-1.929093271 2.253679789
1200 0.00750 —1.929094924 2.253679849
1300 0.00750 —1.929095575 2.253679875
1400 0.00750 —1.929095852 2.253679887
1500 0.00750 —-1.929095978 2.253679893
1600 0.00750 —-1.929096040 2.253679896

fifth decimal place and were calculated with 8192 points
and a grid spacing of ¢/160. These calculations show
some deviation from the values reported in the literature
[6, 11] at all points in the temperature regime; these

deviations lie in the third and fourth decimal place for
most of the values reported , with some second decimal
place discrepancies in the temperature region between
T* = 1.4 and 0.8. Deviation in this area should not be
surprising, as it has been previously reported that this
region corresponds to the area around the critical point
for the Lennard-Jones fluid [7]. This result, as well as
interest in the numerical behavior of the calculation,
requires that we show convergence. To this end, we have
provided convergence tables at 7" = 1.2 in Tables 3, 5,
and 6 and plots of the convergence behavior of the
various integrands in Figs. 3, 4, and 5.

Tables 2, 3, 4, 5, and 6 show the numerical depen-
dence of the different methods; Tables 2, 3, 4, 5 give the
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3.0

125

log(npts)

a dr* 0.001

a1 3.08
0.009 315 -

3.23 log(npts)

b or 0.003 3.25

Fig. 3. a The convergence of D* with respect to the logarithm of
the number of points (npts) and the spacing of the grid (dr), as
calculated in the method outlined in this article. b The convergence
of D* as calculated through the method given by Barker and
coworkers

convergence of D} and Dj on the range and spacing of
the grid, while Table 6 gives the dependence of D on the
polynomial orders present in the calculation. The in-
formation given in these tables is necessary so that we
may show convergence of the two methods, in a con-
sistent manner as well as with respect to the other
method; however, analysis and comparison leads to
plots such as those given in Figs. 3, 4, and 5. In partic-
ular, when the total value of D*, as given from both
methods, is plotted on a convergence graph, such as is
seen in Fig. 3a and b, analysis of the results becomes
more straightforward. Figure 3a and b was plotted as
the logarithm of the difference of the results of a calcu-
lation at a given point in the grid with the converged
answer, i.e. log(D* — D), versus the range and spacing
of the grid. The resulting plot for the virial coefficient
calculated using g(r) is given in Fig. 3a, while the result
from the calculation of the virial coefficient using the
method of Barker is given in Fig. 3b. These plots show
that the sum of the individual integrals does converge
well and to the same answer regardless of the method.
The differences between the two plots also gives us a
chance to analyze the different numerical behavior of the
two methods. In particular, a major feature of any such
plots would be the range in which one would consider an
answer to have reached the precision necessary: this
feature takes the form of a groove within the graph. This
groove is present within Fig. 3a and b, but has different

log(D1* - D1™)

3.08
5 3.11
3.15
3.18 log(npts)
0.006
3.20
a dr 0.003
log(D2*
4.5
-4.75
-5
3.08
-5.25
log(npts)

dr 0.006

b 0003 20

Fig. 4. a The convergence of Dj(Barker). b The convergence of
Dj(Barker)

log(D12* - D12*)

log(npts)

Fig. 5. The convergence of the sum Dj(Barker) + Dj(Barker) =
Di,

characteristics for each. The groove in Fig. 3a is wide
and well defined, indicating that a converged answer can
be attained within a wide range of grid spacing. In
contrast, the groove in Fig. 3b is ill defined and narrow
and, furthermore, only reaches a converged answer at
the very extreme of the grid, where extreme here is used
to mean long range and small grid spacing. Another
essential feature of such grooves can be seen in the
smoothness of Fig. 3a with respect to Fig. 3b. Figure 3b
shows features that do not appear in the case presented
in Fig. 3a. In particular, there appears a “premature”
dip corresponding to a converged answer, a rise
to nonconvergence which then follows into a true



convergence groove. Analysis of this feature leads to the
plots given in Figs. 4 and 5.

The convergence of Dj(Barker) and Dj(Barker) in a
manner analogous to Fig. 3b is shown in Fig. 4a and b.
These results, plotted separately, show no particular
feature which should correspond to the premature con-
vergence which appears in Fig. 3b; however, when the
sum of the two integrals is plotted, as in Fig. 5, where
the sum of the two integrals is denoted by D;,, what
immediately becomes apparent is that there appears
to be a rather fortuitous cancellation appearing at the
corresponding area of Fig. 3b.

The results from this analysis of the Dj(Barker) and
Dj(Barker) terms leads naturally to Tables 5 and 6,
where we give the convergence of both methods of cal-
culating D3. The results of Figs. 4 and 5 show that the
bridge diagram has more influence than would have
been thought, especially in the critical region of the
phase diagram. Furthermore, since this integral is the
most difficult to calculate, regardless of the formal
method used, the numerical techniques used must be
applied with much care. Figures 4 and 5 also show that
numerical precision must be maintained and shown for
even the simple diagrams. Direct comparison of the re-
sults presented here with those in the literature [6, 11]
must be taken with some thought, as no such individual
analysis was done in the previous work; however, the
fact that the literature results agree with those given here
to a reasonable level of precision in the majority of the
phase points indicates that most of the phase diagram, as
previously calculated, remains accurate and precise
to three decimal place precision. However, the region
immediately surrounding the physically important and
interesting critical region may be examined in the light of
the work presented here.

Another factor of Figs. 3, 4, and 5 may be elucidated
in terms of computational efficiency. Specifically, if we
think of the acceptable regions of Fig. 3 in terms of
computational ease, the smooth, wide groove of Fig. 3a
becomes more attractive in these terms. This trend is
further enhanced by the timing associated with each
method of calculation. For example, the calculation of
the total D* using the FFT method required on average
18 min of computing time for a DEC-Alpha 2100-475
per phase point, while the calculation of the virial co-
efficients directly through the method of Barker required
an average of 240 min for the 1600-point calculation at a
particular phase point.

4 Conclusions

The fourth-order virial coefficient has been calculated
exactly to five decimal places for pure Lennard-Jones
fluids at many points in the phase diagram. The
calculations included the standard Fourier transform
method for evaluating the simply connected diagrams
and the evaluation of the bridge diagram for the fourth
order in density by expansion in Legendre polynomials,
a method developed for hard spheres by Attard and
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Patey [2] and applied to Lennard-Jones fluids by Perkyns
and Pettitt [10]. The polynomial-order dependence of the
bridge diagram calculation and the range dependence of
the simply connected diagrams of the fourth order were
found to have more significance than was apparent from
previous calculations [6, 7, 8, 17]. The more strenuous
numerical tests performed demonstrate errors of larger
size than were claimed in the literature [6, 7, 8, 11, 17].
This result was confirmed by comparison with calcula-
tion of the virial coefficients through direct expansion
in irreducible cluster integrals, as has been previously
shown in the literature [6, 7, 11]. Our calculations were
also found to be quite well suited for modest worksta-
tions, with the evaluation in its entirety for one
thermodynamic state being accomplished in approxi-
mately 18 min of computing time using a DEC-Alpha
2100-475.

The exact calculation of the virial coefficients to ar-
bitrary accuracy denotes more than an interesting ad-
dendum to the theory of statistical mechanics; this type
of calculation represents a necessary first step in the
study of phase behavior, which when extended to more
complex systems, will allow the prediction of thermo-
dynamic quantities of fluids in previously intractable
systems. Such quantities are of great current interest in
biological [18] and engineering [1, 3, 5] fields and are as
yet only obtainable by semiempirical approaches. Future
study will require the ability to extend the distribution
function methods presented here to ionic mixtures and
molecular species.
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